Shared CROMERR Services – Signature Services API Documentation

11-14-2016

[image: image1.jpg]

Revision History
	Version Number
	Description of Change
	Change Effective Date
	Change Entered By

	0.1
	Initial draft
	03/07/2013
	EPA

	0.2
	Additional details for service options
	02/20/2014
	EPA

	0.3
	Additional details for error messages
	02/20/2015
	EPA

	1.0
	Additional grammatical updates
	11/14/2016
	EPA

Table of Contents

2Revision History

3Table of Contents

41
About this Guide

41.1
Audience

41.2
Purpose

41.3
Scope

52
Using Signature Services

52.1
Overview

52.2
Trading Partner Manages User Credentials

62.3
Shared CROMERR Services Manages User Credentials

72.4
Validate Copy of Record with Detached Signature

93
CROMERR Shared Services Data Types

93.1
UserType

93.2
PropertyType

93.3
PropertiesType

103.4
EventType

103.5
EventStatusType

113.6
DocumentFormatType

113.7
RetentionStatusType

113.8
NotificationCategoryType

123.9
SharedCromerrErrorCode

153.10
SharedCromerrFault

163.11
DocumentType

163.12
DetachedSignatureType

163.13
SignatureData

173.14
NotificationType

173.15
NotificationsType

183.16
EventGroup

183.17
Event

194
CROMERR Shared Signature and Validate COR Service Calls

194.1
Authenticate

204.2
Create Activity

224.3
AuditEvent

234.4
Sign

254.5
ValidateCOR

1 About this Guide
1.1 Audience

This guide is written for application developers who want to use EPA’s Shared CROMERR Signature Services within their application to support regulatory reporting requirements. The signature services allow a user to sign a document and subsequently validate the copy of record (COR) against the generated signature.
Using these services requires working knowledge of CROMERR requirements. To support any working knowledge, the following materials can be referenced:

· EPA’s CROMERR Overview for direct reporters

· EPA’s CROMERR Overview for states, tribes and local governments.

· EPA’s Shared CROMERR Guidance and Recommendations Document v1.1

1.2 Purpose

This guide describes the operations trading partners should use when the user identity and credentials are stored within the trading partner’s repository and also the Shared CROMERR Services (SCS) repository.

1.3 Scope

This guide provides documentation of the Application Programming Interface (API) for the Shared CROMERR Signature Services developed by the EPA to be used by trading partners. This guide also describes in detail the corresponding operations and data types used in the service operations.

There are complementary API documents that address the other high-level categories of services described below and are available in the EPA CROMERR Shared Services kit for trading partners.

· Registration and Identity Management: The Registration and Identity Management category is a set of services that addresses all user tasks that are involved in creating, validating and maintaining user accounts.
Corresponding Services: (1) User Management; and (2) Identity Proofing
· Signature Ceremony: The Signature Ceremony category is a set of services that are used to authenticate credentials, verify user intent, and electronically sign regulated submissions in a way that binds the signature device to the submission and informs the submitter to provide non-repudiation.
Corresponding Services: (1) Second Factor Authentication; (2) Signature; and (3) Signature and Copy of Record
· Copy of Record Management: The Copy of Record (COR) category of services addresses all activities and functions for storing, maintaining, and retrieving the COR and associated notifications.

Corresponding Service: Signature and Copy of Record
The services will be deployed on EPA servers and accessible by trading partners over the Internet. The following sections of this document will provide details of the Signature Services that the trading partners will invoke to orchestrate shared services from within their client applications.
2 Using Signature Services

2.1 Overview

The Shared Services API presented in this document details the service level calls that the trading partner’s applications will invoke to perform certain functions. It also provides details of the parameters to be sent to the service and the return values sent back to the client application.

In order to use the CROMERR shared services, trading partners will orchestrate the invocation of the services from within their client applications. Details of the client side implementation are dependent on the trading partner’s existing applications and integration with their internal systems, databases and security framework.

The Shared Services Integrated Project Team (IPT)
 recommendation document provided sample uses cases to help a trading partner understand the flow of shared services calls using generic client side processes. These flowcharts will allow the trading partner to recognize integration points between shared services calls and their internal business and technical processes.

Before making any user management service calls, the trading partner client application will invoke the authentication service and acquire a security token which will be used in all subsequent service calls in the same session.

The following list of service operations support the Shared CROMERR Signature Service and can be found in Section 4:

· Authenticate
· Create Activity
· AuditEvent
· Sign
· ValidateCOR
2.2 Trading Partner Manages User Credentials
In this scenario, the trading partner is responsible for storing and maintaining the CROMERR compliant user credentials and 2nd factor authentication information. The Knowledge Based Query (KBQ) can be of any format that the client chooses. The client will explicitly invoke AuditEvent() to audit the re-authentication of the user and the KBQ challenge response. As the trading partner’s CROMERR integration with the Shared Services does not use the Shared Registration Services, then the client application will have to provide signature data in the shared service calls where stipulated to include all information necessary to construct a CROMERR compliant digital signature.

Figure 2‑1 Workflow Diagram for Signature – Trading Partner Manage Credential

[image: image2.emf]CROMERR Services

Trading Partner submits for signing (Shared Signing Services scenario #1)

EPATrading Partner

S

e

s

s

i

o

n

Get Authentication Token

<<securityToken>>

Create CROMERR ActivityCreateActivity()

Audit User Re-AuthenticationAuditEvent()

<<adminID, credential>>

Sign Document

Sign()

D

e

t

a

c

h

e

d

s

i

g

n

a

t

u

r

e

s

t

o

r

a

g

e

Authenticate()

<<securityToken, dataflow, user, properties>>

<<activityId>>

KBQ 20-5-1AuditEvent()

<<securityToken, activityId, event, user>>

<<securityToken, activityId, event, user>>

<<securityToken, activityId, user,

notifications, document, signatureData>>

<<detachedSignature>>

2.3 Shared CROMERR Services Manages User Credentials
In this scenario, the CROMERR Shared Services environment is responsible for storing and maintaining the CROMERR compliant user credentials and 2nd factor authentication information. The Knowledge Based Query (KBQ) will use the 20-5-1 format. The client does not have to explicitly invoke AuditEvent() since these are implicitly called within the other web services invoked.

Figure 2‑2 Workflow Diagram for Signature – SCS Manage User Credentials

[image: image3.emf]CROMERR Services

Trading Partner submits for signing (Shared Signing Services scenario #2)

EPATrading Partner

S

e

s

s

i

o

n

Get Authentication Token

<<securityToken>>

Create CROMERR ActivityCreateActivity()

Authenticate UserAuthenticateUser()

<<adminID, credential>>

Sign Document

Sign()

D

e

t

a

c

h

e

d

s

i

g

n

a

t

u

r

e

s

t

o

r

a

g

e

Authenticate()

<<securityToken, dataflow, user, properties>>

<<activityId>>

Validate KBQ AnswerAnswerQuestion()

<<securityToken, activityId, user, password>>

<<securityToken, activityId, user, answer>>

<<securityToken, activityId, user,

notifications, document, signatureData*>>

<<detachedSignature>>

Get KBQ QuestionGetQuestion()

<<securityToken, activityId, user>>

<<question>>

2.4 Validate Copy of Record with Detached Signature

This shared service is called by the client application when the user wants to validate a document that was previously signed and stored in their local COR archive. In order to do this the client application will have to provide the document, detached signature and the activity ID that was associated with the original signature ceremony. If the trading partner’s CROMERR integration with the Shared Services does not use the Shared Registration Services, then the client application will have to provide signature data in the shared service calls where stipulated to include all information necessary to validate a CROMERR compliant digital signature. If the trading partner is using CROMERR Shared Registration services, then the signature data does not have to be provided.
Figure 2‑3 Workflow Diagram for Validating Copy of Record with Detached Signature

[image: image4.emf]CROMERR Services

Trading Partner invokes COR Validation Shared Service

EPATrading Partner

S

e

s

s

i

o

n

Get Authentication Token

<<securityToken>>

<<adminID, credential>>

Validate Document with Detached

Signature

ValidateCOR()

<<isValid>>

Authenticate()

<<securityToken, activityId, user,

document, detachedSignature, signatureData>>

C

O

R

V

a

l

i

d

a

t

i

o

n

r

e

s

u

l

t

s

NOTE: The <isValid>> flag shown in the return of the ValidateCOR() operation implicitly indicates the success of the operation. It will return nothing if the operation is successful, i.e., the document was validated. If there was a failure, the service throws an exception with a specific error code and error message. Details of the exception message are provided in Section 3.5.

3 CROMERR Shared Services Data Types
This section describes the data types that will be used in the service calls. These data types are used in the shared services operations described in Section 3 CROMERR Shared Signature and Validate COR Service Calls.
3.1 UserType

The UserType defines the base user profile elements that will be used in the CROMERR Shared Services calls.

<xs:complexType name="UserType">

 <xs:sequence>

 <xs:element name="UserId" type="xs:string"/>

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="LastName" type="xs:string"/>

 <xs:element minOccurs="0" name="MiddleInitial" type="xs:string"/>

 </xs:sequence>

</xs:complexType>
	Element
	Definition/Constraints
	Max Length
	Default Value

	1. UserID
	The user selected user identification string
	long
	(None)

	2. FirstName
	User’s first name.
	255
	(None)

	3. LastName
	User’s last name
	255
	(None)

	4. MiddleInitial
	User’s middle initial
	255
	(None)

3.2 PropertyType

The PropertyType encapsulates a single Key-Value pair. This type is provided for future use by the client applications to send client specific information for use in the CROMERR Shared Services operations.

<xs:complexType name="PropertyType">

 <xs:sequence>

 <xs:element minOccurs="0" name="Key" type="xs:string"/>

 <xs:element minOccurs="0" name="Value" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. Key
	A string name for the Key
	255
	(None)

	2. Value
	The Value for the Key
	255
	(None)

3.3 PropertiesType

This type is a collection of zero or more PropertyType elements. As described in the PropertyType definition above, this type is provided for future expansion of the CROMERR Shared Services framework.

<xs:complexType name="PropertiesType">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="Property" type="tns:PropertyType"/>

 </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. PropertyType
	A property type element
	N/A
	(None)

3.4 EventType

The EventType element is used by the shared services operation to describe the type of operation the client invoked or the shared service initiated. It encapsulates a string element that can be one of six values as shown below:
<xs:simpleType name="EventType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Authenticate"/>

 <xs:enumeration value="GetQuestion"/>

 <xs:enumeration value="ValidateAnswer"/>

 <xs:enumeration value="SignDetached"/>

 <xs:enumeration value="StoreDocument"/>

 <xs:enumeration value="DownloadDocument"/>

 </xs:restriction>

</xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. EventType
	An event type is a string which can take one of the following values:

· Authenticate
· GetQuestion

· ValidateAnswer

· SignDetached

· StoreDocument

· DownloadDocument
	N/A
	(None)

3.5 EventStatusType

The EventStatusType is a return type that encapsulates a flag that describes the status of the operation that the client invoked or the shared service initiated. The event status element is a string that can be either “Success” or “Failure” as shown below:
<xs:simpleType name="EventStatusType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Success"/>

 <xs:enumeration value="Failure"/>

 </xs:restriction>

</xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. EventStatusType
	An event type can take one of the following values:

· Success
· Failure
	N/A
	(None)

3.6 DocumentFormatType

This element defines the type of the document that is being submitted by the client for signing as part of the Signature Ceremony. The possible values are shown below:
<xs:simpleType name="DocumentFormatType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="XML"/>

 <xs:enumeration value="BIN"/>

 </xs:restriction>

</xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. DocumentFormatType
	A document can be either one of these following types:
· XML
· BIN
	N/A
	(None)

3.7 RetentionStatusType

This element defines the different retention statuses. New documents will use the “Default” status.
<xs:simpleType name="RetentionStatusType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Default"/>

 <xs:enumeration value="HeldForEnforcement"/>

 <xs:enumeration value="Repudiated"/>

 <xs:enumeration value="Expired"/>

 </xs:restriction>

 </xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. RetentionStatusType
	The following are the values for retention status:

· Default

· HeldForEnforcement

· Repudiated

· Expired
	N/A
	(None)

3.8 NotificationCategoryType

This element describes the notification category.
 <xs:simpleType name="NotificationCategoryType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Email"/>

 </xs:restriction>

 </xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. NotificationCategoryType
	The notification categories are:

· Email
	N/A
	(None)

3.9 SharedCromerrErrorCode

This type defines the error codes that will be returned by the services if the service encounters an exception.

<xs:simpleType name="SharedCromerrErrorCode">

 <xs:restriction base="xs:string">

 <xs:enumeration value="E_Unknown"/>

 <xs:enumeration value="E_UnknownUser"/>

 <xs:enumeration value="E_InvalidCredential"/>

 <xs:enumeration value="E_AccountLocked"/>

 <xs:enumeration value="E_AccessDenied"/>

 <xs:enumeration value="E_TokenExpired"/>

 <xs:enumeration value="E_InvalidToken"/>

 <xs:enumeration value="E_InvalidDataflowName"/>

 <xs:enumeration value="E_InvalidArgument"/>

 <xs:enumeration value="E_InsufficientPrivileges"/>

 <xs:enumeration value="E_InvalidSignature"/>

 <xs:enumeration value="E_WrongIdPassword"/>

 <xs:enumeration value="E_AccountExpired"/>

 <xs:enumeration value="E_WrongAnswer"/>

<xs:enumeration value="E_WeakPassword"/>

<xs:enumeration value="E_ReachedMaximumNumberOfAttempts"/>

<xs:enumeration value="E_InternalError"/>

 </xs:restriction>

</xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. SharedCromerrErrorCode
	This element can have one of the following values:

· E_Unknown

· E_UnknownUser

· E_InvalidCredential

· E_AccountLocked

· E_AccessDenied

· E_TokenExpired

· E_InvalidToken

· E_InvalidDataflowName

· E_InvalidArgument

· E_InsufficientPrivileges

· E_InvalidSignature

· E_WrongIdPassword

· E_AccountExpired

· E_WrongAnswer
· E_WeakPassword

· E_ReachedMaximumNumberOfAttempts

· E_InternalError
	N/A
	(None)

A complete table of Error Codes, Error Messages and Descriptions, is shown below.

	Error Code
	Error Message
	Description

	1. E_Unknown
	Could not create activity.
	Thrown if any other managed errors occur during activity creation.

	2. E_UnknownUser
	a. Unable to authenticate user - The user account could not be located.
b. Could not determine partner for user [user id].
c. Error occurred while looking up partner for user [user id].
	a. Indicates that the service could not authenticate the user because the user account could not be located.
b. Partner not configured for this administrator.
c. An error occurred while trying to determine the partner for this administrator.

	3. E_InvalidCredential
	Unable to authenticate user - The password is invalid.
	Indicates that the service could not authenticate the user because the user- supplied password was invalid.

	4. E_AccountLocked
	Unable to authenticate user -The account is not valid (status = locked), please contact your administrator for assistance.
	Indicates that the account the user is accessing is locked.

	5. E_AccessDenied
	a. [User] is not an administrator.
b. Access is not permitted based on policy.

	a. The token was not issued to an administrator.
b. Indicates that the trading partner is not permitted to access the shared services operation.
c. Catch all for other conditions.

	6. E_TokenExpired
	The security token has expired.
	Indicates that the security token that was created by the Authenticate operation is no longer valid.

	7. E_InvalidToken
	The security token was not issued by this authority.
	Indicates that the security token provided in the operation call is invalid.

	8. E_InvalidDataflowName
	a. You must specify a dataflow name.
b. You have specified an invalid dataflow name [dataflow] for partner [partner].
	a. Activity dataflow is missing.
b. The specified dataflow is not configured for this partner.

	9. E_InvalidArgument
	a. User is missing attributes.
b. Context may not be empty.
c. You cannot reuse an activity for more than one identity proofing request.
	a. The user specified in the activity is missing required attributes.
b. Activity ID is not valid.
c. Partner attempts to reuse an activity for multiple ID proofing sessions.

	10. E_InsufficientPrivileges
	Partner cannot access this activity.
	Partner tries to access an activity not created by them.

	11. E_InvalidSignature
	Invalid Signature.
	Indicates that the signature has been deemed invalid. The most common cases are incorrect signature data (i.e. hashes) on validation, signature cert generated by an invalid Certification Authority (CA), etc.

	12. E_WrongIdPassword
	Note: This is a provider specific message based on their implementation of user management services.
	Indicates that the provided ID or password is invalid.

	13. E_AccountExpired
	Note: This is a provider specific message based on their implementation of user management services.
	Indicates that the user’s account has expired.

	14. E_WrongAnswer
	Note: This is a provider specific message based on their implementation of user management services.
	Indicates that 2nd factor authentication failed because the answer provided by the user was incorrect.

	15. E_WeakPassword
	Note: This is a provider specific message based on their implementation of user management services.
	Indicates that the provided password does not meet complexity requirements.

	16. E_ReachedMaximumNumberOfAttempts
	a. The maximum number of requests for this user has been reached.

b. The maximum number of requests for this month has been reached.

c. The maximum number of failed requests for this user has been reached. Please retry again in [default interval] hour(s).
d. User reached max number of answer attempts.
	a. LexisNexis User attempts threshold has been exceeded. The default threshold is 5 in 24 hours.
b. LexisNexis partner attempts threshold has been exceeded. The default threshold is 500 per month.
c. LexisNexis failed user attempts threshold has been exceeded. The default threshold is 3 in 1 hour.
d. Indicates that a user has entered an incorrect answer three consecutive times.

	17. E_InternalError
	a. Unable to create activity.
b. Error retrieving result.
	Thrown in all other cases.

3.10 SharedCromerrFault
This complex type encapsulates a SharedCromerrErrorCode and a text description of the error.

<xs:complexType name="SharedCromerrFault">

 <xs:sequence>

 <xs:element name="errorCode" nillable="true" type="tns:SharedCromerrErrorCode"/>

 <xs:element name="description" nillable="true" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. errorCode
	A complex type defined in Section 3.9
	N/A
	(None)

	2. description
	A text description of the fault
	N/A
	(None)

3.11 DocumentType
This complex type encapsulates the elements that describe the document metadata and the content of the document.

<xs:complexType name="DocumentType">

 <xs:sequence>

 <xs:element name="Name" type="xs:string"/>

 <xs:element name="Format" type="tns:DocumentFormatType"/>

 <xs:element minOccurs="0" name="RetentionStatus" type="tns:RetentionStatusType"/>

 <xs:element xmlns:ns1="http://www.w3.org/2005/05/xmlmime" minOccurs="0" name="Content" ns1:expectedContentTypes="*/*" type="xs:base64Binary"/>
</xs:sequence>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. Name
	A string description of the document
	255
	(None)

	2. Format
	A complex type defined in Section 3.6
	N/A
	(None)

	3. RetentionStatus
	A complex type defined in Section 3.7
	N/A
	(None)

	4. Content
	This element will hold the document payload which will be of type xs:base64Binary
	N/A
	(None)

3.12 DetachedSignatureType

This complex type is used to encapsulate the detached signature object.

 <xs:complexType name="DetachedSignatureType">

 <xs:sequence>

 <xs:element xmlns:ns2="http://www.w3.org/2005/05/xmlmime" minOccurs="0" name="Content" ns2:expectedContentTypes="*/*" type="xs:base64Binary"/>

 </xs:sequence>

 </xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. Content
	The signature contained in this element is of type xs:base64Binary
	N/A
	(None)

3.13 SignatureData

This complex type encapsulates the three elements that define the user’s signature.

 <xs:complexType name="SignatureData">

 <xs:sequence>

 <xs:element minOccurs="0" name="passwordSHA256Hash" type="xs:string"/>

 <xs:element minOccurs="0" name="questionId" type="xs:string"/>

 <xs:element minOccurs="0" name="answerSHA256Hash" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. passwordSH256Hash
	A string to hold the hash of the password.
	255
	(None)

	2. questionId
	This string is the index to the 2nd factor table that has the 2nd factor authentication questions.
	255
	(None)

	3. answerSHA256Hash
	This string is the users answer to the 2nd factor authentication question.
	255
	(None)

3.14 NotificationType
This complex type describes the type of notification to be sent.

 <xs:complexType name="NotificationType">

 <xs:sequence>

 <xs:element name="NotificationCategory" type="tns:NotificationCategoryType"/>

 <xs:element name="Value" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. NotificationCategory
	A complex type defined in Section 3.8.
	N/A
	(None)

	2. Value
	A text description of the notification type.
	255
	(None)

3.15 NotificationsType

This complex type holds a collection of zero or more NotificationType elements.

 <xs:complexType name="NotificationsType">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="Notification" type="tns:NotificationType"/>

 </xs:sequence>

 </xs:complexType>
	Element
	Definition/Constraints
	Max Length
	Default Value

	1. Notification
	A complex type defined in Section 3.14.
	N/A
	(None)

3.16 EventGroup

This simple type is used to describe the Event that will be logged.

 <xs:simpleType name="EventGroup">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Signature"/>

 <xs:enumeration value="Authentication"/>

 <xs:enumeration value="SecondFactor"/>

 </xs:restriction>

 </xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. EventGroup
	EventGroup can take on one of the following values:

· Signature

· Authentication

· SecondFactor
	N/A
	(None)

3.17 Event

An Event is a complex type that encapsulates elements that describe an Event.

 <xs:complexType name="Event">

 <xs:sequence>

 <xs:element name="date" type="xs:dateTime"/>

 <xs:element name="group" type="tns:EventGroup"/>

 <xs:element name="type" type="tns:EventType"/>

 <xs:element name="status" type="tns:EventStatusType"/>

 </xs:sequence>

 </xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. date
	XML schema Date/Time data type
	N/A
	(None)

	2. group
	A complex type defined in Section 3.16
	N/A
	(None)

	3. type
	A complex type defined in Section 3.4
	N/A
	(None)

	4. status
	A complex type defined in Section 3.5
	N/A
	(None)

4 CROMERR Shared Signature and Validate COR Service Calls
In order to consume the shared services provided, the client application has to perform a set of tasks before the invocation of services. An overview of these steps is provided below and will be repeated in each section at the appropriate points of integration before the service calls:
1. The first pre-requisite is that the client application has a Network Authentication and Authorization Services (NAAS) account. The user account must have appropriate access privileges to allow it to utilize shared services.

2. For each workflow, the client application will invoke the Authenticate() method on the server to receive a security token that will be used for the entire session.

3. The client application will then create an activity by invoking the CreateActivity() method and will receive an activityID that will be used for all subsequent invocations.

4. The client will then invoke the appropriate CROMERR shared service for their workflow.
The following are general guidelines for trading partners for designing client applications to consume CROMERR shared services:
1. The services support MTOM (W3C Message Transmission Optimization Mechanism) by default for operations where large documents are sent. While client-server communication will still work without the MTOM feature documents will be sent as base64 encoded and will involve significant overhead.

2. HTTP chunking should be turned on for greater efficiency in the client-server communications.

3. The client side application will set reasonable HTTP connection/read timeouts. A recommended value is 5 minutes for each.
4. The client side application will ensure that SOAP 1.2 binding is used. This is not the default setup in all toolkits.
5. The trading partner will make sure that all SSL certificates provided are trusted in their SSL configuration stack.
4.1 Authenticate

4.1.1.1 Description

The server must authenticate the client before invoking any services. The Authenticate operation will provide a securityToken on successful authentication of the user or will throw an exception.

4.1.1.2 Definition

The Authenticate operation is defined as:
<wsdl:operation name="Authenticate">

 <wsdl:input message="tns:Authenticate" name="Authenticate">

 </wsdl:input>

 <wsdl:output message="tns:AuthenticateResponse" name="AuthenticateResponse">

 </wsdl:output>

 <wsdl:fault message="tns:SharedCromerrException" name="SharedCromerrException">

 </wsdl:fault>

</wsdl:operation>

The Authenticate input message is shown below:
<xs:complexType name="Authenticate">

 <xs:sequence>

 <xs:element minOccurs="0" name="adminId" type="xs:string"/>

 <xs:element minOccurs="0" name="credential" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

The AuthenticateResponse output message is shown below:
<xs:complexType name="AuthenticateResponse">

 <xs:sequence>

 <xs:element minOccurs="0" name="securityToken" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

4.1.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. Authenticate
	adminId
	Yes
	CROMERR Shared Services Administration ID

	2. Authenticate
	credential
	Yes
	CROMERR Shared Services Administration password

4.1.1.4 Return

If the operation is successful it returns a NAAS security token.

4.1.1.5 Exceptions

If the service failed it returns following error codes:

· E_Unknown

· E_UnknownUser

· E_InvalidCredential

· E_AccountLocked

The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 3.9.
4.2 Create Activity

4.2.1.1 Description

The CreateActivity operation will be used by the client application to create a CROMERR Activity. This CROMERR Activity enables the shared service provider to associate all related CROMERR events such as authentication and signature with a unique transaction ID. It also provides the way to pass specific application properties to shared services. This service shall be invoked after the Authenticate service and prior to invoking other shared services.

4.2.1.2 Definition

The CreateActivity operation is defined as:
<wsdl:operation name="CreateActivity">

 <wsdl:input message="tns:CreateActivity" name="CreateActivity">

 </wsdl:input>

 <wsdl:output message="tns:CreateActivityResponse" name="CreateActivityResponse">

 </wsdl:output>

 <wsdl:fault message="tns:SharedCromerrException" name="SharedCromerrException">

 </wsdl:fault>

</wsdl:operation>

The CreateActivity input message is shown below:
<xs:complexType name="CreateActivity">

 <xs:sequence>

 <xs:element minOccurs="0" name="securityToken" type="xs:string"/>

 <xs:element minOccurs="0" name="dataflow" type="xs:string"/>

 <xs:element minOccurs="0" name="user" type="tns:UserType"/>

 <xs:element minOccurs="0" name="properties" type="tns:PropertiesType"/>

 </xs:sequence>

</xs:complexType>

The CreateActivityResponse output message is shown below:
<xs:complexType name="CreateActivityResponse">

 <xs:sequence>

 <xs:element minOccurs="0" name="activityId" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

4.2.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. CreateActivity
	securityToken
	Yes
	Valid NAAS security token obtained using Authenticate.

	2. CreateActivity
	dataflow
	Yes
	The name of the dataflow for this activity. The dataflow shall be registered with shared services prior to any activities

	3. CreateActivity
	user
	Yes
	The user associated with the CreateActivity and is of the type defined in the Section 3.1 UserType.

	4. CreateActivity
	properties
	Yes
	Note: This argument is made available for future expansion of the CROMERR Shared Services

4.2.1.4 Return

If the operation is successful it returns a CROMERR Activity ID.
4.2.1.5 Exceptions

If the service failed it returns following error codes:

· E_Unknown

· E_AccessDenied

· E_TokenExpired

· E_InvalidDataflowName

· E_InvalidArgument

· E_InsufficientPrivileges

The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 3.9.
4.3 AuditEvent

4.3.1.1 Description

The AuditEvent operation will be used by the client application to submit various events performed on the client side related to signature process such as user authentication, signature storage, etc. These events will be associated with previously created CROMERR Activity.

4.3.1.2 Definition

The AuditEvent operation is defined as:
<wsdl:operation name="AuditEvent">

 <wsdl:input message="tns:AuditEvent" name="AuditEvent">

 </wsdl:input>

 <wsdl:output message="tns:AuditEventResponse" name="AuditEventResponse">

 </wsdl:output>

 <wsdl:fault message="tns:SharedCromerrException" name="SharedCromerrException">

 </wsdl:fault>

</wsdl:operation>

The AuditEvent input message is shown below:
<xs:complexType name="AuditEvent">

 <xs:sequence>

 <xs:element minOccurs="0" name="securityToken" type="xs:string"/>

 <xs:element minOccurs="0" name="activityId" type="xs:string"/>

 <xs:element minOccurs="0" name="event" type="tns:Event"/>

 <xs:element minOccurs="0" name="user" type="tns:UserType"/>

 </xs:sequence>

</xs:complexType>

The AuditEventResponse output message is shown below:
<xs:complexType name="AuditEventResponse">

 <xs:sequence/>

</xs:complexType>

4.3.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. AuditEvent
	securityToken
	Yes
	Valid NAAS security token obtained using Authenticate.

	2. AuditEvent
	activityId
	Yes
	CROMERR Activity ID returned by CreateActivity

	3. AuditEvent
	event
	Yes
	An Event of the type defined in Section 3.4.

	4. AuditEvent
	user
	Yes
	The user associated with this event and is of the type defined in the Section 3.1.

4.3.1.4 Return

· Void
4.3.1.5 Exceptions
If the service failed it returns following error codes:

· E_Unknown

· E_AccessDenied

· E_TokenExpired

· E_InvalidToken

· E_InvalidDateflowName

· E_InvalidArgument

· E_InsufficientPrivileges

The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 3.9.
4.4 Sign

4.4.1.1 Description

The Sign operation of the CROMERR Shared Services is invoked with the document and signature Data along with other parameters described in this section and the service returns a detached signature. This signature will be stored in the client environment. Additionally, out of band notification is provided to the email addresses provided by the user at the time of signing.
4.4.1.2 Definition

The Sign operation is defined as:

<wsdl:operation name="Sign">

 <wsdl:input message="tns:Sign" name="Sign">

 </wsdl:input>

 <wsdl:output message="tns:SignResponse" name="SignResponse">

 </wsdl:output>

 <wsdl:fault message="tns:SharedCromerrException" name="SharedCromerrException">

 </wsdl:fault>

</wsdl:operation>

The Sign input message is shown below:
 <xs:complexType name="Sign">

 <xs:sequence>

 <xs:element minOccurs="0" name="securityToken" type="xs:string"/>

 <xs:element minOccurs="0" name="activityId" type="xs:string"/>

 <xs:element minOccurs="0" name="user" type="tns:UserType"/>

 <xs:element minOccurs="0" name="notifications" type="tns:NotificationsType"/>

 <xs:element minOccurs="0" name="document" type="tns:DocumentType"/>

 <xs:element minOccurs="0" name="signatureData" type="tns:SignatureData"/>

 </xs:sequence>

 </xs:complexType>

The Sign output message is shown below:
 <xs:complexType name="SignResponse">

 <xs:sequence>

 <xs:element minOccurs="0" name="detachedSignature" type="tns:DetachedSignatureType"/>

 </xs:sequence>

 </xs:complexType>
4.4.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. Sign
	securityToken
	Yes
	Valid NAAS security token obtained using Authenticate.

	2. Sign
	activityId
	Yes
	CROMERR Activity Id returned by the CreateActivity

	3. Sign
	user
	Yes
	The user information of the type defined in the Section 3.1.

	4. Sign
	notifications
	Yes
	List of the notification addresses. Notification will be sent upon the signing of the document to every recipient in the list. A notification is of the type defined in Section 3.14.

	5. Sign
	document
	Yes
	The document to be signed and is of the type defined in Section 3.11.

	6. Sign
	signatureData
	No
	The signature data is of the type as defined in Section 3.13.
Note: This element is only required if CROMERR Shared Registration Services are not being used.

4.4.1.4 Return

If the operation is successful, the detached signature is returned.
4.4.1.5 Exceptions

If the service fails it returns following error codes:

· E_Unknown

· E_AccessDenied

· E_TokenExpired

· E_InvalidToken

· E_InvalidDataflowName

· E_InvalidArgument

· E_InsufficientPrivileges

The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 3.9.
4.5 ValidateCOR

4.5.1.1 Description

The ValidateCOR operation will be used by the client application to validate a signed document. The operation will check if the user signed the document and the document was not altered since signing. This operation will be used when the document and document signature is stored on the client side.
4.5.1.2 Definition

The ValidateCOR operation is defined as:
<wsdl:operation name="ValidateCor">

 <wsdl:input message="tns:ValidateCor" name="ValidateCor">

 </wsdl:input>

 <wsdl:output message="tns:ValidateCorResponse" name="ValidateCorResponse">

 </wsdl:output>

 <wsdl:fault message="tns:SharedCromerrException" name="SharedCromerrException">

 </wsdl:fault>

</wsdl:operation>

The ValidateCor input message is shown below:
<xs:complexType name="ValidateCor">

 <xs:sequence>

 <xs:element minOccurs="0" name="securityToken" type="xs:string"/>

 <xs:element minOccurs="0" name="activityId" type="xs:string"/>

 <xs:element minOccurs="0" name="user" type="tns:UserType"/>

 <xs:element minOccurs="0" name="document" type="tns:DocumentType"/>

 <xs:element minOccurs="0" name="detachedSignature" type="tns:DetachedSignatureType"/>

 <xs:element minOccurs="0" name="signatureData" type="tns:SignatureData"/>

 </xs:sequence>

</xs:complexType>

The ValidateCorResponse output message is shown below:
 <xs:complexType name="ValidateCorResponse">

 <xs:sequence/>

 </xs:complexType>

4.5.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. ValidateCor
	securityToken
	Yes
	Valid NAAS security token obtained using Authenticate.

	2. ValidateCor
	activityId
	Yes
	CROMERR Activity Id returned by the CreateActivity service

	3. ValidateCor
	user
	Yes
	The user information is of the type defined in Section 3.1.

	4. ValidateCor
	document
	Yes
	The signed document content is of the type defined in Section 3.11.

	5. ValidateCor
	detachedSignature
	Yes
	The detached signature is of type defined in Section 3.12.

	6. ValidateCor
	signatureData
	No
	The signature data is of the type as defined in Section 3.13.
Note: This element is only required if CROMERR Shared Registration Services are not being used.

4.5.1.4 Return

If the operation is successful and validation passes, nothing is returned. If the COR validation fails, an exception is thrown which contains an error code and error message.
4.5.1.5 Exceptions

If the service fails it returns following error codes:

· E_Unknown

· E_AccessDenied

· E_TokenExpired

· E_InvalidToken

· E_InvalidDataflowName

· E_InvalidArgument

· E_InsufficientPrivileges

The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 3.9.

Shared CROMERR Services

Application Programming Interface (API) Document

Signature Services

Version: 1.0

Revision Date: November 14, 2016

� http://www.exchangenetwork.net/shared-cromerr-services-ipt/

PAGE
3

_1424155847.vsd
Title

Function

Phase�

�

Function

�

�

_1424155848.vsd
Title

Function

Phase�

�

Function

�

�

_1424155846.vsd
Title

Function

Phase�

�

Function

�

�

