Shared CROMERR Services – Identity Proofing Services API Documentation

11-14-2016

[image: image1.jpg]

Revision History
	Version Number
	Description of Change
	Change Effective Date
	Change Entered By

	0.1
	Initial draft
	04/22/2013
	EPA

	0.2
	Additional details for service options
	02/20/2014
	EPA

	0.3
	Additional details for LexisNexis policy and error messages
	02/20/2015
	EPA

	0.4
	Addition of alternate web service usage
	11/24/2015
	EPA

	1.0
	Added content for custom-built page to collect LexisNexis information; Provided indicator for deprecated identify proofing pop-up

	11/14/2016
	EPA

Table of Contents

2Revision History

3Table of Contents

41
About this Guide

41.1
Audience

41.2
Purpose

41.3
Scope

52
Using Third-Party Identity Proofing Services

52.1
Overview

52.2
Verify User Identity

52.2.1
Identity Proofing Scenario 1 (DEPRECATED)

72.2.2
Identity Proofing Scenario 2

103
CROMERR Shared Services Data Types

103.1
UserType

103.2
PropertyType

103.3
PropertiesType

113.4
IdentityProofingUserType

113.5
IdentityProofingSessionParametersType

113.6
IdentityProofingSummaryResultType

123.7
IdentityProofingResultType

123.8
IdentityProofingStatusType

133.9
DocumentFormatType

133.10
RetentionStatusType

143.11
SharedCromerrErrorCode

173.12
SharedCromerrFault

173.13
DocumentType

183.14
RepudiationInfoType

183.1
IdentityProofingFullUserType

204
Shared CROMERR Identity Proofing Service Calls

204.1
Authenticate

214.2
CreateActivity

234.3
CreateSession

244.4
CreateRequest

264.5
GetResult

1 About this Guide
1.1 Audience

This guide is written for application developers who want to use EPA’s Shared CROMERR Identity Proofing Services within their application to support regulatory reporting requirements. The identity proofing services provide an interface to an asynchronous third-party electronic identity proofing service.
Using these services requires working knowledge of CROMERR requirements. To support any working knowledge, the following materials can be referenced:

· EPA’s CROMERR Overview for direct reporters

· EPA’s CROMERR Overview for states, tribes and local governments.

· EPA’s Shared CROMERR Guidance and Recommendations Document v1.1

1.2 Purpose

This guide describes the operations trading partners should use when the user identity and credentials are stored within Shared CROMERR Services (SCS) repository.

1.3 Scope

This guide provides documentation of the Application Programming Interface (API) for the Shared CROMERR Identity Proofing Services developed by the EPA to be used by trading partners. This guide also describes in detail the corresponding operations and data types used in the service operations.

There are complementary API documents that address the other high-level categories of services described below and are available in the EPA CROMERR Shared Services kit for trading partners.

· Registration and Identity Management: The Registration and Identity Management category is a set of services that addresses all user tasks that are involved in creating, validating and maintaining user accounts.
Corresponding Services: (1) User Management; and (2) Identity Proofing
· Signature Ceremony: The Signature Ceremony category is a set of services that are used to authenticate credentials, verify user intent, and electronically sign regulated submissions in a way that binds the signature device to the submission and informs the submitter to provide non-repudiation.
Corresponding Services: (1) Second Factor Authentication; (2) Signature; and (3) Signature and Copy of Record
· Copy of Record Management: The Copy of Record (COR) category of services addresses all activities and functions for storing, maintaining, and retrieving the COR and associated notifications.

Corresponding Service: Signature and Copy of Record
The services will be deployed on EPA servers and accessible by trading partners over the Internet. The following sections of this document will provide details of the User Management Services that the trading partners will invoke to orchestrate shared services from within their client applications.
2 Using Third-Party Identity Proofing Services
2.1 Overview

The Shared Services API presented in this document details the service level calls that the trading partner’s applications will invoke to perform certain functions. It also provides details of the parameters to be sent to the service and the return values sent back to the client application.

In order to use the CROMERR shared services, trading partners will orchestrate the invocation of the services from within their client applications. Details of the client side implementation are dependent on the trading partner’s existing applications and integration with their internal systems, databases and security framework.

The Shared Services Integrated Project Team (IPT)
 recommendation document provided sample uses cases to help a trading partner understand the flow of shared services calls using generic client side processes. These flowcharts will allow the trading partner to recognize integration points between shared services calls and their internal business and technical processes.

Before making any identity proofing service calls, the trading partner client application will invoke the authentication service and acquire a security token which will be used in all subsequent service calls in the same session.

The following list of service operations support the Shared CROMERR Identity Proofing Service, which interacts with the LexisNexis services, and can be found in Section 4 of this document:
· Authenticate
· CreateActivity
· CreateSession
· CreateRequest

· GetResult

2.2 Verify User Identity
There are two defined scenarios in Shared CROMERR Services for trading partners to use within their applications to integrate with an external electronic identity proofing service. Each scenario is outlined below. The first scenario is now deprecated and should no longer be used by new partners.
2.2.1 Identity Proofing Scenario 1 (DEPRECATED)
In this scenario, the trading partner uses the LexisNexis services for identity proofing by invoking a pop-up. As in all the other services, the trading partner application will get an authentication token and create a CROMERR activity. The trading partner application will then create a LexisNexis session in the SCS server. The SCS server returns a set of Identity Proofing Session parameters to the client application which the application will use to complete the next step of the identity proofing process.

The client application must create an HTML form where the method is set to POST (method = post) and the action attribute is set to the URL that was returned from the call to CreateSession. The user is presented with this form and will fill in all the required fields needed to complete the identity proofing.

The identity proofing data form will have a hidden form element named "CRYPTO" with the value set to the FormData session parameter obtained in the previous step. FormData is Base64 encoded encrypted (RSA using LexisNexis public key) key/value pairs. The key/value pairs include the user’s first name, last name, middle initial, mode, partner, and type.

When the user hits the submit button, the form data is sent to the LexisNexis service URL. A pop-up window is presented to the user to enter additional information in order to perform identity proofing. The LexisNexis service then performs the proprietary identity proofing steps and will asynchronously send back the response to SCS via an out of band HTTP Post. This means that the results of the identity proofing may not be available for the trading partner immediately and may take a varying amount of time for different users.
The trading partner will invoke the SCS GetResult service to retrieve the status of the LexisNexis identity proofing for a user and may require multiple queries across sessions if the Pending status is returned. The other two statuses of the GetResult operation are Completed or Failed.
The SOAP endpoints for the portal for Scenario 1 are defined below:
	Environment
	Endpoint

	Development
	https://encromerrdev.epacdxnode.net/shared-cromerr-ws/services/IdentityProofingService

	Test
	https://encromerrtest.epacdxnode.net/shared-cromerr-ws/services/IdentityProofingService

	Production
	https://encromerr.epa.gov/shared-cromerr-ws/services/IdentityProofingService

Figure 2‑1 Workflow Diagram for Identity Proofing Services Scenario #1

[image: image2.emf]CROMERR Services

Identity Proofing using LexisNexis (Shared Identity Proofing Services)

EPATrading PartnerLexisNexis

S

e

s

s

i

o

n

Get Authentication Token

<<securityToken>>

Create CROMERR

Activity

CreateActivity()

Create LexisNexis

Session

CreateSession()

<<adminID,

credential>>

Authenticate()

<<securityToken,

dataflow,

user, properties>>

<<activityId>>

<<securityToken,

activityId,

user>>

<<identityProofingSession>>

User Handoff to

LexisNexis

Collect Identity

Information

<<”CRYPTO”=FormData(FName,

LName, MI, mode, partner, type)>>

L

o

c

a

l

I

d

e

n

t

i

t

y

P

r

o

o

f

i

n

g

S

t

o

r

a

g

e

Get LexisNexis Result

GetResult()

<<securityToken,

activityId>>

<<result>>

LexisNexis Proprietary ID

proofing

S

C

S

I

d

e

n

t

i

t

y

P

r

o

o

f

i

n

g

R

e

s

u

l

t

s

ID Proofing Results

2.2.2 Identity Proofing Scenario 2

In this scenario, the trading partner chooses to opt for a custom-built page to collect information required by LexisNexis instead of invoking the pop-up. As in all the other services, the trading partner application will get an authentication token and create a CROMERR activity. The trading partner application will then create a LexisNexis request in the SCS server.
The client application must create an HTML form where information required by LexisNexis (First Name, Last Name, Middle Name, SSN4, Home Address, City, State, Zip Code, Home Phone, DOB) will be collected. The user is presented with this form and will fill in all the required fields needed to complete the identity proofing. When the user hits the submit button, the form data is sent to the LexisNexis service URL using CreateRequest.
The trading partner will invoke the SCS GetResult service to retrieve the status of the LexisNexis identity proofing for a user and may require multiple queries across sessions if the Pending status is returned. The other two statuses of the GetResult operation are Completed or Failed.
The SOAP endpoints for the portal for Scenario 2 are defined below:
	Environment
	Endpoint

	Development
	https://encromerrdev.epacdxnode.net/shared-cromerr-ws/services/IdentityProofingService2

	Test
	https://encromerrtest.epacdxnode.net/shared-cromerr-ws/services/IdentityProofingService2

	Production
	https://encromerr.epa.gov/shared-cromerr-ws/services/IdentityProofingService2

Figure 2‑2 Workflow Diagram for Identity Proofing Services Scenario #2

[image: image3.emf]CROMERR Services

Identity Proofing using LexisNexis (Shared Identity Proofing Services)

EPATrading PartnerLexisNexis

S

e

s

s

i

o

n

Get Authentication

Token

<<securityToken>>

Create CROMERR

Activity

CreateActivity()

Create LexisNexis

Request

CreateRequest()

<<adminID,

credential>>

Authenticate()

<<securityToken,

dataflow,

user, properties>>

<<activityId>>

<<securityToken,

activityId,

user>>

L

o

c

a

l

I

d

e

n

t

i

t

y

P

r

o

o

f

i

n

g

S

t

o

r

a

g

e

Get LexisNexis Result

GetResult()

<<securityToken,

activityId>>

<<result>>

LexisNexis Proprietary ID

proofing

S

C

S

I

d

e

n

t

i

t

y

P

r

o

o

f

i

n

g

R

e

s

u

l

t

s

ID Proofing Results

Collect Identity

Information

3 CROMERR Shared Services Data Types
This section describes the data types that will be used in the service calls. These data types are used in the shared services operations described in Section 4.
3.1 UserType

The UserType defines the base user profile elements that will be used in the CROMERR Shared Services calls.

<xs:complexType name="UserType">

 <xs:sequence>

 <xs:element name="UserId" type="xs:string"/>

 <xs:element name="FirstName" type="xs:string"/>

 <xs:element name="LastName" type="xs:string"/>

 <xs:element minOccurs="0" name="MiddleInitial" type="xs:string"/>

 </xs:sequence>

</xs:complexType>
	Element
	Definition/Constraints
	Max Length
	Default Value

	1. UserID
	The user selected user identification string
	long
	(None)

	2. FirstName
	User’s first name
	255
	(None)

	3. LastName
	User’s last name
	255
	(None)

	4. MiddleInitial
	User’s middle initial
	255
	(None)

3.2 PropertyType

The PropertyType encapsulates a single Key-Value pair. This type is provided for future use by the client applications to send client specific information for use in the CROMERR Shared Services operations.

<xs:complexType name="PropertyType">

 <xs:sequence>

 <xs:element minOccurs="0" name="Key" type="xs:string"/>

 <xs:element minOccurs="0" name="Value" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. Key
	A string name for the Key
	255
	(None)

	2. Value
	The Value for the Key
	255
	(None)

3.3 PropertiesType

This type is a collection of zero or more PropertyTypeelements. As described in the PropertyType definition above, this type is provided for future expansion of the CROMERR Shared Services framework.

<xs:complexType name="PropertiesType">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="Property" type="tns:PropertyType"/>

 </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. PropertyType
	A property type element
	N/A
	(None)

3.4 IdentityProofingUserType

This type encapsulates the user’s first and last name. Note: this complex type is used only when using Identity Proofing Scenario #1 outlined in section 2.2.1.
<xs:complexType name="IdentityProofingUserType">

 <xs:all>

 <xs:element name="FirstName" type="xs:string" />

 <xs:element name="LastName" type="xs:string" />

 </xs:all>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. FirstName
	The user’s first name
	255
	(None)

	2. LastName
	The user’s last name
	255
	(None)

3.5 IdentityProofingSessionParametersType

This type encapsulates the session parameters returned by the SCS service for the client application to communicate directly with the LexisNexis server. Note: this complex type is used only when using Identity Proofing Scenario #1 outlined in section 2.2.1.
<xs:complexType name="IdentityProofingSessionParametersType">

 <xs:sequence>

 <xs:element name="ServiceUrl" type="xs:string" />

 <xs:element name="FormData" type="xs:string" />

 </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. ServiceUrl
	The URL of the LexisNexis service
	255
	(None)

	2. FormData
	The form data for the LexisNexis service
	255
	(None)

3.6 IdentityProofingSummaryResultType
This type holds the summary status of the identity proofing.
<xs:simpleType name="IdentityProofingSummaryResultType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="CROMERR_Minimum" />

 <xs:enumeration value="CROMERR_Exceeded" />

 <xs:enumeration value="CROMERR_NotMet" />

 </xs:restriction>

</xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. IdentityProofingSummaryResultType
	The result value can be either one of these following types:
· CROMERR_Minimum
· CROMERR_Exceeded
· CROMERR_NotMet
	N/A
	(None)

3.7 IdentityProofingResultType

This type encapsulates the results of the identity proofing at the time the client application invokes the GetResult operation.
<xs:complexType name="IdentityProofingResultType">

 <xs:sequence>

 <xs:element name="Status" type="tns:IdentityProofingStatusType" />

 <xs:element minOccurs="0" name="RawResults" type="tns:DocumentType" />

 <xs:element minOccurs="0" name="SummaryResult"
 type="tns:IdentityProofingSummaryResultType" />

 <xs:element minOccurs="0" name="SummaryResultDescription"

 type="xs:string" />

 </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. Status
	The status of the identity proofing as defined in Section 2.8 IdentityProofingStatusType
	N/A
	(None)

	2. RawResults
	The raw results of the identity proofing returned in a document as defined in Section 2.13 DocumentType
	N/A
	(None)

	3. SummaryResult
	A summary of the results as defined in Section 2.6 IdentityProofingSummaryResultType
	N/A
	(None)

	4. SummaryResultDescription
	A summary description of the results of identity proofing
	255
	(None)

3.8 IdentityProofingStatusType

This type encapsulates the status of the identity proofing.

<xs:simpleType name="IdentityProofingStatusType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Pending" />

 <xs:enumeration value="Completed" />

 <xs:enumeration value="Failed" />

 </xs:restriction>

</xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. IdentityProofingStatusType
	The status value can be either one of these following types:
· Pending
· Completed
· Failed
	N/A
	(None)

3.9 DocumentFormatType

This element defines the type of the document that is being submitted by the client for signing as part of the Signature Ceremony. The possible values are shown below:
<xs:simpleType name="DocumentFormatType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="XML"/>

 <xs:enumeration value="BIN"/>

 </xs:restriction>

</xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. DocumentFormatType
	A document can be either one of these following types:
· XML
· BIN
	N/A
	(None)

3.10 RetentionStatusType

This element defines the different retention statuses. New documents will use the “Default” status.
<xs:simpleType name="RetentionStatusType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Default" />

 <xs:enumeration value="HeldForEnforcement" />

 <xs:enumeration value="Repudiated" />

 <xs:enumeration value="Expired" />

 <xs:enumeration value="Rescinded" />

 </xs:restriction>

</xs:simpleType>
	Element
	Definition/Constraints
	Max Length
	Default Value

	1. RetentionStatusType
	The following are the values for retention status:

· Default

· HeldForEnforcement

· Repudiated

· Expired
· Rescinded
	N/A
	(None)

3.11 SharedCromerrErrorCode

This type defines the error codes that will be returned by the services if the service encounters an exception.

<xs:simpleType name="SharedCromerrErrorCode">

 <xs:restriction base="xs:string">

 <xs:enumeration value="E_Unknown"/>

 <xs:enumeration value="E_UnknownUser"/>

 <xs:enumeration value="E_InvalidCredential"/>

 <xs:enumeration value="E_AccountLocked"/>

 <xs:enumeration value="E_AccessDenied"/>

 <xs:enumeration value="E_TokenExpired"/>

 <xs:enumeration value="E_InvalidToken"/>

 <xs:enumeration value="E_InvalidDataflowName"/>

 <xs:enumeration value="E_InvalidArgument"/>

 <xs:enumeration value="E_InsufficientPrivileges"/>

 <xs:enumeration value="E_InvalidSignature"/>

 <xs:enumeration value="E_WrongIdPassword"/>

 <xs:enumeration value="E_AccountExpired"/>

 <xs:enumeration value="E_WrongAnswer"/>

<xs:enumeration value="E_WeakPassword"/>

<xs:enumeration value="E_ReachedMaximumNumberOfAttempts"/>

<xs:enumeration value="E_InternalError"/>

 </xs:restriction>

</xs:simpleType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. SharedCromerrErrorCode
	This element can have one of the following values:

· E_Unknown

· E_UnknownUser

· E_InvalidCredential

· E_AccountLocked

· E_AccessDenied

· E_TokenExpired

· E_InvalidToken

· E_InvalidDataflowName

· E_InvalidArgument

· E_InsufficientPrivileges

· E_InvalidSignature

· E_WrongIdPassword

· E_AccountExpired

· E_WrongAnswer
· E_WeakPassword

· E_ReachedMaximumNumberOfAttempts

· E_InternalError
	N/A
	(None)

A complete table of Error Codes, Error Messages and Descriptions, is shown below.

	Error Code
	Error Message
	Description

	1. E_Unknown
	Could not create activity.
	Thrown if any other managed errors occur during activity creation.

	2. E_UnknownUser
	a. Unable to authenticate user - The user account could not be located.
b. Could not determine partner for user [user ID]
c. Error occurred while looking up partner for user [user ID].
	a. Indicates that the service could not authenticate the user because the user account could not be located
b. Partner not configured for this administrator.
c. An error occurred while trying to determine the partner for this administrator.

	3. E_InvalidCredential
	Unable to authenticate user - The password is invalid.
	Indicates that the service could not authenticate the user because the user- supplied password was invalid.

	4. E_AccountLocked
	Unable to authenticate user -The account is not valid (status = locked), please contact your administrator for assistance.
	Indicates that the account the user is accessing is locked.

	5. E_AccessDenied
	a. [user] is not an administrator
b. Access is not permitted based on policy.

	a. The token was not issued to an administrator.
b. Indicates that the trading partner is not permitted to access the shared services operation
c. Catch all for other conditions.

	6. E_TokenExpired
	The security token has expired
	Indicates that the security token that was created by the Authenticate operation is no longer valid.

	7. E_InvalidToken
	The security token was not issued by this authority
	Indicates that the security token provided in the operation call is invalid.

	8. E_InvalidDataflowName
	a. You must specify a dataflow name
b. You have specified an invalid dataflow name [dataflow] for partner [partner].
	a. Activity dataflow is missing.
b. The specified dataflow is not configured for this partner.

	9. E_InvalidArgument
	a. User is missing attributes.
b. Context may not be empty.
c. You cannot reuse an activity for more than one identity proofing request
	a. The user specified in the activity is missing required attributes.
b. Activity ID is not valid.
c. Partner attempts to reuse an activity for multiple ID proofing sessions.

	10. E_InsufficientPrivileges
	Partner cannot access this activity.
	Partner tries to access an activity not created by them.

	11. E_InvalidSignature
	Invalid Signature
	Indicates that the signature has been deemed invalid. The most common cases are incorrect signature data (i.e. hashes) on validation, signature cert generated by an invalid Certification Authority (CA), etc.

	12. E_WrongIdPassword
	Note: This is a provider specific message based on their implementation of user management services.
	Indicates that the provided ID or password is invalid

	13. E_AccountExpired
	Note: This is a provider specific message based on their implementation of user management services.
	Indicates that the user’s account has expired.

	14. E_WrongAnswer
	Note: This is a provider specific message based on their implementation of user management services.
	Indicates that 2nd factor authentication failed because the answer provided by the user was incorrect.

	15. E_WeakPassword
	Note: This is a provider specific message based on their implementation of user management services.
	Indicates that the provided password does not meet complexity requirements.

	16. E_ReachedMaximumNumberOfAttempts
	a. The maximum number of requests for this user has been reached.

b. The maximum number of requests for this month has been reached.

c. The maximum number of failed requests for this user has been reached. Please retry again in [default interval] hour(s)
d. User reached max number of answer attempts.
	a. LexisNexis User attempts threshold has been exceeded. The default threshold is 5 in 24 hours.
b. LexisNexis partner attempts threshold has been exceeded. The default threshold is 500 per month.
c. LexisNexis failed user attempts threshold has been exceeded. The default threshold is 3 in 1 hour.
d. Indicates that a user has entered an incorrect answer three consecutive times.

	17. E_InternalError
	a. Unable to create activity.
b. Error retrieving result.
	Thrown in all other cases.

3.12 SharedCromerrFault
This complex type encapsulates a SharedCromerrErrorCode and a text description of the error.

<xs:complexType name="SharedCromerrFault">

 <xs:sequence>

 <xs:element name="errorCode" nillable="true" type="tns:SharedCromerrErrorCode"/>

 <xs:element name="description" nillable="true" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. errorCode
	A complex type defined in Section 3.11
	N/A
	(None)

	2. description
	A text description of the fault
	N/A
	(None)

3.13 DocumentType
This complex type encapsulates the elements that describe the document metadata and the content of the document.

<xs:complexType name="DocumentType">

 <xs:sequence>

 <xs:element name="ID" type="xs:string"/>

 <xs:element name="Format" type="tns:DocumentFormatType"/>

 <xs:element minOccurs="0" name="CreatedDate" type="xs:dateTime "/>

 <xs:element minOccurs="0" name="RetentionStatus" type="tns:RetentionStatusType"/>

 <xs:element minOccurs="0" name="RepudiationInfo" type="tns: RepudiationInfoType"/>

 <xs:element minOccurs="0" name="Content" type="xs:base64Binary"/>
 </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. Name
	A string description of the document
	255
	(None)

	2. Format
	A complex type defined in Section 3.6
	N/A
	(None)

	3. CreatedDate
	The date the document was stored in Shared CROMERR Services
	N/A
	

	4. RetentionStatus
	A complex type defined in Section 3.10
	N/A
	(None)

	5. RepudiationInfo
	A complex type defined in Section 3.14
	N/A
	

	6. Content
	This element will hold the document payload which will be of type xs:base64Binary
	N/A
	(None)

3.14 RepudiationInfoType

The RepudiationInfoType is a complex type that encapsulates the description of the repudiation.

<xs:complexType name="RepudiationInfoType">

 <xs:sequence>

 <xs:element minOccurs="0" name="Description" type="xs:string "/>

 </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. Description
	A text description of the repudiation type
	255
	(None)

3.15 IdentityProofingFullUserType
The IdentityProofingFullUser Type is a complex type that encapsulates all required user information in order to process LexisNexis. Note: this complex type is used only when using Identity Proofing Scenario #2 outlined in Section 2.2.1.

<xs:complexType name="IdentityProofingFullUserType">

 <xs:all>

 <xs:element name="UserId" type="xs:string "/>

 <xs:element name="FirstName" type="xs:string "/>

 <xs:element name="LastName" type="xs:string "/>

 <xs:element minOccurs="0" name="MiddleInitial" type="xs:string "/>

 <xs:element name="MailingAddress1" type="xs:string "/>

 <xs:element minOccurs="0" name="MailingAddress2" type="xs:string "/>

 <xs:element name="City" type="xs:string "/>

 <xs:element name="State" type="xs:string "/>

 <xs:element name="Zip" type="xs:string "/>

 <xs:element name="Phone" type="xs:string "/>

 <xs:element name="SSNLast4" type="xs:string "/>

 <xs:element name="DateOfBirth" type="xs:dateTime "/>

 <xs:element minOccurs="0" name="DriversLicenseName" type="xs:string "/>

 <xs:element minOccurs="0" name="DriversLicenseState" type="xs:string "/>

 </xs:sequence>

</xs:complexType>

	Element
	Definition/Constraints
	Max Length
	Default Value

	1. UserId
	The associated SCS User ID that is being identity proofed.
	255
	

	2. FirstName
	User’s first name.
	255
	

	3. LastName
	User’s last name.
	255
	

	4. MiddleInitial
	User’s middle initial.
	255
	

	5. MailingAddress1
	User’s street address.
	
	

	6. MailingAddress2
	User’s second streeet address line.
	
	

	7. City
	User’s mailing address’ city.
	
	

	8. State
	User’s state.
	
	

	9. Zip
	User’s zip code.
	
	

	10. Phone
	User’s ten digit phone number.
	
	

	11. SSNLast4
	Last four digits of a user’s social security number.
	4
	

	12. DateOfBirth
	User’s date of birth in xsdDateTime format.
	
	

	13. DriversLicenseName
	User’s driver’s license number. This functionality is currently not supported but has been added for future releases.
	
	

	14. DriversLicenseState
	State for which the user’s driver’s license was issued. This functionality is currently not supported but has been added for future releases.
	
	

4 Shared CROMERR Identity Proofing Service Calls
In order to consume the shared services provided, the client application has to perform a set of tasks before the invocation of services. An overview of these steps is provided below and will be repeated in each section at the appropriate points of integration before the service calls:
1. The first pre-requisite is that the client application has a Network Authentication and Authorization Services (NAAS) account. The user account must have appropriate access privileges to allow it to utilize shared services.

2. For each workflow, the client application will invoke the Authenticate() method on the server to receive a security token that will be used for the entire session.

3. The client application will then create an activity by invoking the CreateActivity() method and will receive an activityID that will be used for all subsequent invocations.

4. The client will then invoke the appropriate CROMERR shared service for their workflow.
The following are general guidelines for trading partners for designing client applications to consume CROMERR shared services:
1. The services support MTOM (W3C Message Transmission Optimization Mechanism) by default for operations where large documents are sent. While client-server communication will still work without the MTOM feature documents will be sent as base64 encoded and will involve significant overhead.

2. HTTP chunking should be turned on for greater efficiency in the client-server communications.

3. The client side application will set reasonable HTTP connection/read timeouts. A recommended value is 5 minutes for each.
4. The client side application will ensure that SOAP 1.2 binding is used. This is not the default setup in all toolkits.
5. The trading partner will make sure that all SSL certificates provided are trusted in their SSL configuration stack.
4.1 Authenticate

4.1.1.1 Description

The server must authenticate the client before invoking any services. The Authenticate operation will provide a securityToken on successful authentication of the user or will throw an exception.

4.1.1.2 Definition

The Authenticate operation is defined as:
<wsdl:operation name="Authenticate">

 <soap12:operation soapAction="Authenticate" style="document" />

 <wsdl:input name="Authenticate">

 <soap12:body use="literal" />

 </wsdl:input>

 <wsdl:output name="AuthenticateResponse">

 <soap12:body use="literal" />

 </wsdl:output>

 <wsdl:fault name="SharedCromerrException">

 <soap12:fault name="SharedCromerrException" use="literal" />

 </wsdl:fault>

</wsdl:operation>
The Authenticate input message is shown below:
<xs:complexType name="Authenticate">

 <xs:sequence>

 <xs:element name="adminId" type="xs:string"/>

 <xs:element name="credential" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

The AuthenticateResponse output message is shown below:
<xs:complexType name="AuthenticateResponse">

 <xs:sequence>

 <xs:element minOccurs="0" name="securityToken" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

4.1.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. Authenticate
	adminId
	Yes
	CROMERR Shared Services Administration ID

	2. Authenticate
	credential
	Yes
	CROMERR Shared Services Administration password

4.1.1.4 Return

If the operation is successful it returns a NAAS security token.

4.1.1.5 Exceptions

If the service failed it returns following error codes:

· E_UnknownUser

· E_InvalidCredential

· E_AccountLocked
· E_AccessDenied
The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 3.11.
4.2 CreateActivity

4.2.1.1 Description

The CreateActivity operation will be used by the client application to create a CROMERR Activity. This CROMERR Activity enables the shared service provider to associate all related CROMERR events such as authentication and signature with a unique transaction ID. It also provides the way to pass specific application properties to shared services. This service shall be invoked after the Authenticate service and prior to invoking other shared services.

4.2.1.2 Definition

The CreateActivity operation is defined as:
<wsdl:operation name="CreateActivity">

 <soap12:operation soapAction="CreateActivity" style="document" />

 <wsdl:input name="CreateActivity">

 <soap12:body use="literal" />

 </wsdl:input>

 <wsdl:output name="CreateActivityResponse">

 <soap12:body use="literal" />

 </wsdl:output>

 <wsdl:fault name="SharedCromerrException">

 <soap12:fault name="SharedCromerrException" use="literal" />

 </wsdl:fault>

</wsdl:operation>
The CreateActivity input message is shown below:
<xs:complexType name="CreateActivity">

 <xs:sequence>

 <xs:element name="securityToken" type="xs:string" />

 <xs:element name="dataflow" type="xs:string" />

 <xs:element name="user" type="tns:UserType" />

 <xs:element minOccurs="0" name="properties" type="tns:PropertiesType" />

 </xs:sequence>

</xs:complexType>
The CreateActivityResponse output message is shown below:
<xs:complexType name="CreateActivityResponse">

 <xs:sequence>

 <xs:element minOccurs="0" name="activityId" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

4.2.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. CreateActivity
	securityToken
	Yes
	Valid NAAS security token obtained using Authenticate.

	2. CreateActivity
	dataflow
	Yes
	The name of the dataflow for this activity. The dataflow shall be registered with shared services prior to any activities

	3. CreateActivity
	user
	Yes
	The user associated with the CreateActivity and is of the type defined in the Section 3.1 UserType.

	4. CreateActivity
	properties
	Yes
	Note: This argument is made available for future expansion of the CROMERR Shared Services

4.2.1.4 Return

If the operation is successful it returns a CROMERR Activity ID
4.2.1.5 Exceptions

If the service failed it returns following error codes:

· E_Unknown
· E_UnknownUser
· E_AccessDenied

· E_InvalidDataflowName

· E_InvalidArgument
· E_InternalError
The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 3.11.
4.3 CreateSession
4.3.1.1 Description

The CreateSession operation is used to retrieve the identity proofing session parameters from the Shared CROMERR Service.

The following policies apply to LexisNexis attempts in regards to CreateSession:
· A user will be locked out for a period of 1 hour if a Partner ID, first and last name combination fail 3 times within 1 hour. The maximum attempt and duration values are configurable; however their default values are 3 and 1, respectively.
· Partners have a daily limit of 100 attempts.
· Partners have a configurable limit of CreateSession attempts per month with a default of value of 500.
NOTE: This operation is used only when using Identity Proofing Scenario #1 outlined in section 2.2.1. To ensure that the pop-up window is launched, consider using JavaScript to check and notify the user if the window is blocked. If the window is not blocked, then display the LexisNexis collection screen.

4.3.1.2 Definition

The CreateSession operation is defined as:
<wsdl:operation name="CreateSession">

 <soap12:operation soapAction="CreateSession" style="document" />

 <wsdl:input name="CreateSession">

 <soap12:body use="literal" />

 </wsdl:input>

 <wsdl:output name="CreateSessionResponse">

 <soap12:body use="literal" />

 </wsdl:output>

 <wsdl:fault name="SharedCromerrException">

 <soap12:fault name="SharedCromerrException" use="literal" />

 </wsdl:fault>

</wsdl:operation>

The CreateSession input message is shown below:
<xs:complexType name="CreateSession">

 <xs:sequence>

 <xs:element name="securityToken" type="xs:string" />

 <xs:element name="activityId" type="xs:string" />

 <xs:element name="user" type="tns:IdentityProofingUserType" />

 </xs:sequence>

</xs:complexType>

The CreateSession output message is shown below:
<xs:complexType name="CreateSessionResponse">

 <xs:sequence>

 <xs:element minOccurs="0" name="sessionParams"

 type="tns:IdentityProofingSessionParametersType" />

 </xs:sequence>

</xs:complexType>
4.3.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. CreateSession
	securityToken
	Yes
	Valid NAAS security token obtained using Authenticate.

	2. CreateSession
	activityId
	Yes
	CROMERR Activity Id returned by the CreateActivity.

	3. CreateSession
	user
	Yes
	The user information of the type specific for identity proofing is defined in the Section 3.1.

4.3.1.4 Return

If the operation is successful, the identity proofing session parameters are defined in Section 3.5.
4.3.1.5 Exceptions

If the service fails it returns following error codes:

· E_UnknownUser
· E_AccessDenied

· E_InvalidArgument

· E_InsufficientPrivileges
· E_ReachedMaxNumberofAttempts

· E_InternalError

The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 3.11.
4.4 CreateRequest

4.4.1.1 Description

The CreateRequest operation is used to create an identity proofing request for 3rd party provider LexisNexis. Note: this operation is used only when using Identity Proofing Scenario #2 outlined in Section 2.2.2.

4.4.1.2 Definition

The CreateRequest operation is defined as:
<wsdl:operation name="CreateRequest">

 <soap12:operation soapAction="CreateRequest" style="document" />

 <wsdl:input name="CreateRequest">

 <soap12:body use="literal" />

 </wsdl:input>

 <wsdl:output name="CreateRequestResponse">

 <soap12:body use="literal" />

 </wsdl:output>

 <wsdl:fault name="SharedCromerrException">

 <soap12:fault name="SharedCromerrException" use="literal" />

 </wsdl:fault>

</wsdl:operation>

The CreateRequest input message is shown below:
<xs:complexType name="CreateRequest">

 <xs:sequence>

 <xs:element name="securityToken" type="xs:string" />

 <xs:element name="activityId" type="xs:string" />

 <xs:element name="user" type="tns:IdentityProofingFullUserType" />

 </xs:sequence>

</xs:complexType>

The CreateRequest output message is shown below:
<xs:complexType name="CreateRequestResponse">

 <xs:sequence>

</xs:complexType>
4.4.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. CreateRequest
	securityToken
	Yes
	Valid NAAS security token obtained using Authenticate.

	2. CreateRequest
	activityId
	Yes
	CROMERR Activity Id returned by the CreateActivity

	3. CreateRequest
	user
	Yes
	The user information of the type specific for identity proofing is defined in the Section 2.15.

4.4.1.4 Return

If the operation is successful, the identity proofing session parameters are defined in Section 2.5.

4.4.1.5 Exceptions

If the service fails it returns following error codes:

· E_Unknown

· E_AccessDenied

· E_TokenExpired

· E_InvalidToken

· E_InvalidDataflowName

· E_InvalidArgument

· E_InsufficientPrivileges

The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 2.11.
4.5 GetResult
4.5.1.1 Description

The GetResult operation will be used by the client application to get the result of the LexisNexis identity proofing session that was performed on the data submitted by the user. Since the LexisNexis proprietary steps may take different times for users, the process is asynchronous. When the LexisNexis process has completed it will send the results of the identity proofing session to the shared repository.

The trading partner client application will have to poll the Shared CROMERR Services using the GetResult operation to determine if LexisNexis identity proofing results are available in the SCS server.
4.5.1.2 Definition

The GetResult operation is defined as:

<wsdl:operation name="GetResult">

 <soap12:operation soapAction="GetResult" style="document" />

 <wsdl:input name="GetResult">

 <soap12:body use="literal" />

 </wsdl:input>

 <wsdl:output name="GetResultResponse">

 <soap12:body use="literal" />

 </wsdl:output>

 <wsdl:fault name="SharedCromerrException">

 <soap12:fault name="SharedCromerrException" use="literal" />

 </wsdl:fault>

</wsdl:operation>
The GetResult input message is shown below:
<xs:complexType name="GetResult">

 <xs:sequence>

 <xs:element name="securityToken" type="xs:string" />

 <xs:element name="activityId" type="xs:string" />

 </xs:sequence>

</xs:complexType>
The GetResult output message is shown below:
<xs:complexType name="GetResultResponse">

 <xs:sequence>

 <xs:element minOccurs="0" name="result"

type="tns:IdentityProofingResultType" />

 </xs:sequence>

</xs:complexType>

4.5.1.3 Arguments

	Type
	Element
	Required
	Definition/Constraints

	1. GetResult
	securityToken
	Yes
	Valid NAAS security token obtained using Authenticate.

	2. GetResult
	activityId
	Yes
	CROMERR Activity ID returned by the CreateActivity service

4.5.1.4 Return

If the operation is successful the result of the identity proofing is returned in an IdentityProofingResultType object as defined in Section 3.7.
4.5.1.5 Exceptions

If the service fails it returns following error codes:

· E_AccessDenied
· E_UnknownUser
· E_InvalidArgument

· E_InsufficientPrivileges
· E_InternalError
The comprehensive table of Error Codes, Error Messages and descriptions of each can be found in Section 3.11.
Shared CROMERR Services

Application Programming Interface (API) Document

Identity Proofing Services

Version: 1.0

Revision Date: Nov 14, 2016

� http://www.exchangenetwork.net/shared-cromerr-services-ipt/

PAGE
21

_1428738806.vsd
Title

Function

Phase�

�

Function

�

�

_1508148064.vsd
Title

Function

Phase�

�

Function

�

�

